
Learning Fragments of the TCP Network
Protocol

Paul Fiterău-Broştean?, Ramon Janssen, and Frits Vaandrager

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
{P.FiterauBrostean,f.vaandrager}@cs.ru.nl, ramon.janssen@student.ru.nl

Abstract. We apply automata learning techniques to learn fragments of
the TCP network protocol by observing its external behavior. We show
that different implementations of TCP in Windows 8 and Ubuntu in-
duce different automata models, thus allowing for fingerprinting of these
implementations. In order to infer our models we use the notion of a
mapper component introduced by Aarts, Jonsson and Uijen, which ab-
stracts the large number of possible TCP packets into a limited number
of abstract actions that can be handled by the regular inference tool
LearnLib. Our work improves upon previous work by Uijen, who learned
an overapproximation of the behavior of a TCP implementation in the
ns-2 simulator.

1 Introduction

Our society has become reliant on the security and application of protocols used
for various operations. Standards describing these protocols typically fail to spec-
ify what an agent should do in case another agent does not follow the rules of the
protocol, which can result in exploits by hackers. Moreover, implementations of
these standards can differ, and may deviate slightly from the official standard, re-
sulting in security vulnerabilities. Automata learning techniques can help expose
and/or mitigate such problems through tools that help generate state models for
these systems.

Learning techniques enable the inference of state models for systems available
as black boxes. Inferring such models is important not only for understanding
these systems, but also for model checking and model based testing. To this
end, several learning algorithms and tools have been developed, such as those
presented in: [5, 19, 16, 3, 21, 12].

Whereas learning algorithms such as L* [5], work for systems with limited
numbers of abstract inputs and outputs, many protocols make use of messages
with parameters, for instance sequence numbers or flags. Moreover, network pro-
tocols may remember variables. For example, the TCP protocol requires remem-
bering several variables for maintaining a connection. Efforts have been made to

? Supported by NWO project 612.001.216: Active Learning of Security Protocols
(ALSEP).



develop techniques to learn these more complex systems. In particular, building
on the extension of the L* algorithm used to learn Mealy machines (Niese [11]),
F. Aarts et al. describe in [4] a methodology for learning systems via abstraction.
This method entails introducing a mapper component in-between the protocol
and the learner. The mapper reduces the parameters and state variables implied
by the protocol to a small number of abstract values, on which learning algo-
rithms can then be applied. By using this technique, they were able to infer state
models of simulated versions of the Transmission Control Protocol (TCP) and
the Session Initiation Protocol (SIP).

Advancements have been made in constructing the mapper automatically.
Tomte [1] is a tool that builds mappers automatically for a subset of scalarset
Mealy Machines. State machines from this subset can only test the equality of
existing parameters and outputs, which is insufficient to learning systems that
implement operations on data. (for instance, sums or other linear operations)

The goal of this work is to use abstraction to learn implementations of the
TCP-protocol for different operating systems. We use abstraction based on the
approach described in [1], but extend it to include the increment operator which
is needed to learn the TCP protocol. While our setup specifically targets TCP,
it can be easily adapted to learn other protocols.

Related work. In addition to software simulations of network protocols, the
methodology described by Aarts et al. [4] was also used to infer state diagrams
of embedded control software [20] and banking cards [2]. Dawn Song et al. [7]
developed techniques to learn the state diagram of a network protocol used to
control botnets. Learning techniques were also used to learn HTTP interaction
models for web applications, as part of the SPaCIoS Project [6].

Organization. The paper is structured as follows: Section 2 gives a brief de-
scription of the TCP network protocol, Section 3 sets the context of regular
inference with abstraction. Section 4 presents the framework we implemented to
learn the TCP network protocol. Section 5 explains how the setup implements
abstraction. Section 6 explains difficulties encountered and how we managed
them. Section 7 presents experiments carried out to learn TCP. Section 8 out-
lines conclusions and related work.

2 The TCP Network Protocol

The transmission control protocol [14], or TCP, is a connection-based network
protocol that allows two application programs to transfer data bidirectionally, in
a reliable and orderly manner. The programs can run on the same or on separate
machines. TCP supports data transfer through the connection abstraction where
a connection comprises two endpoints associated with each of the two programs.
A connection progresses from one state to the next following events, which are
user actions, incoming segments containing flags, sequence and acknowledgement
numbers, and timeouts. Connection progression is depicted in Figure 1.

2



CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

CLOSING
LAST ACK

TIME WAIT

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

Close/FIN

ACK/- SYN + ACK/ACK

Close/FIN FIN/ACK

ACK

ACK/-

FIN +
ACK/ACK

FIN/ACK

ACK/-

Close/FIN

ACK

Timeout after two max-
imum segment lifetimes

Fig. 1. A state diagram describing TCP 1

We give a brief example of how the protocol functions from connection ini-
tiation to termination. For brevity, we use flags-segment as shorthands for
segments having the mentioned control flags activated.

The two systems communicating through TCP have different roles: one sys-
tem acts as a server and the other as a client. Connection between server and
client is established through the three-way handshake. Assuming the server is
in the listen-state, waiting for a client to connect to it, the client sends a syn-
segment on an Active open-action and transitions to the syn sent-state. On
receiving this segment, the server responds with a syn+ack-segment, transi-
tioning to the syn rcvd-state. The client then acknowledges the server ’s seg-
ment with an ack-segment and transitions to the established-state. On receiv-
ing this segment, the server also transitions to the established-state, connec-

1 Code to generate this model was retrieved from http://www.texample.net/tikz/

examples/tcp-state-machine/. Copyright 2009 Ivan Griffin. Reprinted under the
LaTeX Project Public License, version 1.3.

3



tion is established and data can be transferred, thus concluding the three-way
handshake.

When either side has finished sending data, that side sends a segment with
a fin-flag on an Active close-action, signaling that it has no more data left
to send. This can be acknowledged with a fin+ack-segment if the other device
also wants to close the connection, or with a ack-segment if that device still
wants to send data. Once the device has sent all data, it sends a fin-message,
closing the connection.

Notice that the state diagram in Figure 1 does not fully specify the behaviour
of the TCP-implementation. More specifically, the model does not reveal what
response is given in case either side receives a segment for which no transition
is defined (for instance, if a rst-segment is received in the syn rcvd-state).
Moreover, the model abstracts away from the sequence and acknowledgment
numbers found in TCP packets. Many of these details can be inferred from the
protocol standard. There are, however, some details which are implementation
specific, with each operating system providing its own TCP implementation.
Hence, inferring models of these TCP implementations represents a valuable
asset in analyzing their concrete behavior.

3 Regular Inference Using Abstraction

In this section, we recall the definition of a Mealy machine, the basic ideas of
regular inference in Angluin-style, and the notion of a mapper which allows us
to learn “large” models with data parameters.

3.1 Learning Mealy Machines

We will use Mealy machines to model TCP protocol entities. A Mealy machine
M is the tuple M = 〈I,O,Q, q0,→〉, where

– I, O, and Q are nonempty sets of input symbols, output symbols, and states,
respectively,

– q0 ∈ Q is the initial state, and
– →⊆ Q× I ×O ×Q is the transition relation.

Transitions are tuples of the form (q, i, o, q′) ∈→. A transition implies that,
on receiving an input i ∈ I, when in the state q ∈ Q, the machine jumps to the
state q′ ∈ Q, producing the output o ∈ O. Mealy machines are deterministic if
for every state and input, there is exactly one transition. A Mealy machine is
finite if I and Q are finite sets.

Angluin described L* in [5], an algorithm to learn deterministic finite au-
tomata. Niese [11] adapted this algorithm to learning deterministic Mealy ma-
chines. Improved versions of the L∗ algorithm were implemented in the LearnLib
tool [15, 13], developed at the Technical University of Dortmund. A graphical
model of the basic learning setup is given in Figure 2.

4



Fig. 2. Overview of the learner and the SUT

We assume an implementation, or System Under Test (SUT ), and postu-
late that its behavior can be described by a deterministic Mealy Machine M.
The learner, connected to the SUT, sends inputs (or queries) to the SUT and
observes resulting outputs. After each observation, the learner sends a special
reset message, prompting the reset of the implementation. Based on the obser-
vation of the outputs, it builds a hypothesis H. The hypothesis is then tested
against the implementation. Testing involves running a number of test sequences
which determine whether the hypothesis conforms to the SUT. The hypothesis
is returned if all test sequences show conformation, otherwise it is further re-
fined on the basis of the new counterexample. This process is repeated until all
equivalence queries are passed.

3.2 Inference using Abstraction

Existing implementations of inference algorithms only proved effective when ap-
plied to machines with small alphabets (sets of input and output symbols). Prac-
tical systems like the TCP protocol, however, typically have large alphabets, e.g.
inputs and outputs with data parameters of type integer or string.

A solution to this problem was proposed by Aarts et al in [4]. In this work,
the concrete values of every parameter are mapped to a small domain of abstract
values in a history-dependent manner. A mapper component is placed in-between
the learner and the SUT. The learner sends abstract inputs comprising abstract
parameter values to this component. The mapper component then turns the
abstract values into concrete values (by taking the inverse of the abstraction
function), forming concrete inputs, and sends them to the SUT. The concrete
outputs received from the SUT are subsequently transformed back to abstract
outputs and are returned to the learner. Reset messages sent by the learner to
the SUT also reset the mapper component. A graphical overview of the learner
and mapper component is given in Figure 3.

Fig. 3. Overview of the learner, the mapper and the SUT

5



Formally, the behavior of the intermediate component is fully determined
by the notion of a mapper A, which essentially is just a deterministic Mealy
machine. A mapper encompasses both concrete and abstract sets of input and
output symbols, a set of states, an initial state, a transition function that tells
us how the occurrence of a concrete symbol affects the state, and an abstraction
function which, depending on the state, maps concrete to abstract symbols. Each
mapper A induces an abstraction operator αA, which transforms a concrete
Mealy machine with concrete inputs I and outputs O into an abstract Mealy
machine with abstract inputs X and outputs Y . If the behavior of the SUT is
described by a Mealy machine M then the SUT and the mapper component
together are described by the Mealy machine αA(M). Dually, each mapper also
induces a concretization operator γA, which transforms an abstract hypothesis
Mealy machine H with inputs X and outputs Y into a concrete Mealy machine
with inputs I and outputs O. A key result proved by Aarts et al [4] is that
αA(M) ≤ H implies M ≤ γA(H), where ≤ denotes behavioral inclusion of
Mealy machines. This result allows us to transform an abstract modelH, inferred
through interaction with a mapper component, into a concrete model that over-
approximates the behavior of the SUT.

4 Learning Setup

In the case of TCP, the SUT is the server in the TCP communication. On
the other side, the learner and mapper simulate the client. On the client side
we also introduce the adapter, a component that translates between messages
and segments that are to be sent over the network. More specifically, it builds
request segments from concrete inputs, sends them to the server, retrieves the
response segments and infers the respective concrete outputs, which it delivers
to the learner -mapper assembly. It is important to make distinction between
the mapper and adapter. Whereas the mapper implements mapping between
abstract and concrete messages, the adapter transforms these concrete messages
to a format that is readable by the SUT.

With that said, we present in Figure 4 the framework implemented to learn
fragments of the TCP implementation. On the learner side, we use LearnLib [16]
and Tomte [1], two Java based learning tools. LearnLib provides the Java im-
plementation of the L* based learning algorithm, while we use some of Tomte’s
libraries to connect the learner to a Java based mapper via direct method calls.
A Python adapter based on Scapy [17] is used to craft, send request packets and
retrieve response packets. Communication between the mapper and adapter is
done over sockets.

We conducted our experiments on both a single and on two separate ma-
chines. The client and server reside in separate operating systems. When learn-
ing a model of the server, the resulting model describes the implementation
of TCP for the operating system on which the server resides. Each operating
system enables the user to configure parameters involved in TCP. These param-
eters can also have an influence over the resulting model. We used Wireshark

6



Fig. 4. Overview of the experimental setup

to monitor communication between client and server. Note that Scapy cannot
communicate locally over the localhost(127.0.0.1) interface [18]. Consequently,
communication is held over an Ethernet connection.

The experiments were carried out with the server deployed on Windows 8 and
Ubuntu 13.10 respectively. The server passively listens for incoming connections
on a port while the learner, acting as a ”fake client”, sends messages to the
server through its own port.

5 Messages and Abstraction

As mentioned previously, we use a mapper component that translates abstract
input messages into concrete input messages, and concrete output messages into
abstract output messages. More specifically, parameters contained in messages
are mapped from a concrete to an abstract domain, and vice versa. Figure 5
shows the concrete and abstract parameters used in learning. Also shown is how
the concrete parameters are then associated with fields within TCP segments.
Our message selection is based on the work of Aarts et al. in [4]. Like in their
work, both inputs and outputs are generated based on the sequence number,
acknowledgement number and flags found in each TCP segment.

Both the concrete and the abstract alphabets comprise Request inputs and
Response outputs. Each of these inputs and outputs takes 3 parameters corre-
sponding to the sequence number, acknowledgment number and the TCP flags.
The concrete parameters SeqNr and AckNr are defined as 32 bit unsigned inte-
gers, while their corresponding abstract parameters SeqV and AckV are either
valid or invalid . The Flags parameter can have the values ack, syn, fin, rst,
or any valid combination as listed in Figure 5. These flags correspond to bitfields
of the control register in the TCP-frame, in which flags are either set or unset.
In other words, each element of flags defines which flags have been set: all flags
mentioned are set, all other flags are not.

7



{SERVERPORT, CLIENTPORT}

SeqV, AckV {V,INV}

SeqC,AckC {FRESH, SVSN, 
SVSN+1, CLSN, 

CLSN+1, LSS, LAS,  
ZERO}

SeqNr [0 , 232-1]

AckNr [0 , 232-1]

Flags {SYN, SYN+ACK, 
ACK, FIN, 
FIN+ACK, 

RST, RST+ACK}

Request(Flags,SeqV,AckV) Request(Flags,SeqNr,AckNr)

Response(Flags,SeqNr,AckNr)Response(Flags,SeqC,AckC)

Source port Destination port

Sequence number

Acknowledgment number

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

URG ACK PSH RST SYN FIN

Mapper

Fig. 5. Message scheme

We abstract away from the sequence and acknowledgement numbers sent to
the server by way of validity. We define validity based on whether the sequence
and acknowledgement numbers comply to the standard TCP flow. Here the
sequence number sent is equal to the last acknowledgement number received
while the acknowledgement number sent is equal to the last sequence number
received (the server sequence number) plus the length of the data that the
client expects to receive plus 1 in case the segment carries a syn or a fin flag.
ack flags do not lead to any increase. Numbers that comply to this standard
are valid, those that don’t are invalid. We except from this rule whenever the
server is in the listening-state with no connection set up. In this case, new
sequence numbers are generated via ISN (Initial Sequence Number), a number
generation algorithm. We abstract away from this algorithm by deeming all
generated numbers valid and none invalid at this stage. Consequently, we ignore
any messages containing invalid parameters that the learner generates at this
point. (we do not create and send segments for these inputs)

We abstract away from the sequence and acknoweldgement numbers received
from the server by comparing them with values encountered in the communi-
cation up to that point. These values are stored in state variables which are
maintained by the mapper. We also define the abstract output timeout for the
case when no response segment is received.

In order to map between abstract and concrete the mapper maintains the
following state variables:

– lastSeqSent stores the last sequence number sent by the client
– lastAckSent stores the last acknowledgment number sent by the client

8



– lastFlagSent stores the last flag sent by the client
– valClientSeq stores the last valid sequence number sent by the client
– lastAbsSeq stores whether the last sequence number sent by the client was

valid
– lastAbsAck stores whether the last acknowledgement number sent by the

client was valid
– InitServSeq stores the first sequence number from the server
– INIT records whether the server is in its initial state.

Variables lastSeqSent, lastAckSent, lastFlagSent, lastAbsSeq, lastAbsAck and InitServSeq
store the first or most recent occurrence of certain message parameters. Vari-
able valClientSeq stores the last valid sequence number: its definition is based
on knowledge of the protocol. Variable INIT records whether the server is in its
initial state.

On the basis of these variables, we define below the functions for Request
transmission, Response receival, and Timeout . For symmetry, we use SeqAbs and
AckAbs as notations for both abstract input and abstract output parameters.

function Request(Flags, SeqNr, AckNr)
lastFlagSent← Flags
if INIT ∨ SeqNr == valClientSeq then

SeqAbs← valid
valClientSeq← SeqNr

else
SeqAbs← invalid

end if
lastSeqSent← SeqNr
lastAbsSeq← SeqAbs
if INIT ∨AckNr == InitServSeq + 1 then

AckAbs← valid
else

AckAbs← invalid
end if
lastAckSent← AckNr
lastAbsAck← AckAbs
return Request(Flags,SeqAbs,AckAbs)

end function

In the context of Response outputs, we compare values found in server re-
sponses to a set of reference values. Note the similarity between the conditions
we chose and the conditions used in nmap [10] to perform OS fingerprinting.
Also note that we assume no collision between different reference values. It is
indeed possible that the client sequence number is equal to the server sequence
number. However, the likelihood is very low due to the extended range these
numbers can take values in.

function Response(Flags, SeqNr, AckNr)
if INIT then

SeqAbs← FRESH

9



InitServSeq = SeqNr
else

SeqAbs← Abstract(SeqNr)
end if
AckAbs← Abstract(AckNr)
if AckAbs == CLSN + 1 then

InitServSeq← SeqNr
end if
INIT← IsInitial()
return Response(Flags,SeqAbs,AckAbs)

end function

function Abstract(concVal)
if concVal == valClientSeq + 1 then

absVal← CLSN + 1
else if concVal == valClientSeq then

absVal← CLSN
else if concVal == InitServSeq then

absVal == SVSN
else if concVal == InitServSeq + 1 then

absVal← SVSN + 1
else if concVal == lastSeqSent then

absVal← LSS
else if concVal == lastAckSent then

absVal← LAS
else if concVal == 0 then

absVal← ZERO
else

absVal← INV
end if
return absVal

end function

function Timeout
INIT← IsInitial()

end function

One important aspect is the detection of the initial state (ie. the listening-
state in the TCP protocol, INIT in the mapper definition). Such awareness is
necessary in order to follow the TCP flow, wherein transitions from this state im-
ply that new sequence numbers have to be generated for both client and server.
The server and client sequence number variables (clientSN and serverSN ) must
be updated accordingly. For this purpose, we define an oracle which responds
whether the system is in the initial state. We found that the oracle for Windows
8 can be implemented by a function over the state variables stored in the map-
per and the output parameters. For Ubuntu 13.10, definition of such a function
was made difficult by the fact that, depending on the system’s current state, the
abstract input Request(ack+rst, valid, invalid) either resets the system or is ig-

10



nored. If the oracle is defined via a function, definition of this function depends
on the operating system for which TCP is learned. Below we show definition of
INIT for Windows 8.

function IsInitial
if IsResponse then

INIT← RST ∈ Flags ∧ SeqAbs = valid ∧ SY N ∈ lastFlagSent
else if IsT imeout then

INIT← INIT ∨ (lastAbsSeq = valid ∧RST ∈ lastFlagSent)
end if

end function

6 Complications encountered

To learn the system, several issues had to be addressed. Firstly, we had to imple-
ment resetting mechanisms that would prompt the TCP connection to return to
the start state. We did this by either opening a new connection to the server on
a different port each time we started a new query or by resetting the connection.
In the first case, we were hit by thresholds on the number of connections allowed
on a given state. More specifically, for Windows 8, once the server reaches a
certain number of connections left in the close wait-state, the server proceeds
to send fin+ack-segment to close all connections. The second approach implies
sending a rst-segment with a valid sequence number, which was possible with
the mapper previously described. Consequently, we opted for this approach for
our final experiments. Another possible approach would have been resetting the
server application. We believe this approach, ignoring the mechanisms involved,
would also prove problematic since there are instances when a connection on the
server is blocked in a certain state for a period of time. During that period the
server cannot terminate. We found this situation with the syn rcvd-state on
Windows 8.

We also had to manage the handling of syn+ack retransmits. When the
server is in the syn rcvd-state, it expects a corresponding ack-segment to
the syn+ack-segment it sent, thus ending the 3 way handshake. In this situa-
tion, the TCP protocol specifies that, if the server does not receive the expected
acknowledgement within a time frame, it re-sends the syn+ack-segment a num-
ber of times after which it closes the connection. This behavior is not accounted
for because it would require timer adjustments to fit with the retransmission
time frame. We disabled syn+ack retransmission for Ubuntu by setting the
tcp synack retries to 0. No such settings were needed in Windows 8 since the
whole query can be executed within one the retransmission time frame.

We also encountered difficulties with packet receival. By analyzing packet
communication we found that Scapy sometimes misses fast server responses,
that is, responses sent after a short time span from their corresponding requests.
We believe this could be caused by Scapy’s slow performance in intercepting re-
sponses quick enough. To circumvent this problem, we crafted a network tracking
tool based on Impacket [8] and Pcapy [9] which augments Scapy’s receival ca-

11



pabilities. In case Scapy does not receive any responses back, the tracking tool
either confirms that no response was intercepted or returns the response that
Scapy missed.

Our experiments were also affected by the operating system on which the
learner setup was deployed. The Ubuntu operating systems the learner was run
on are unaware of what network packets are sent by Scapy, and therefore cannot
recognize the response packets sent by the server. More specifically, as a TCP-
connection is set up by the learner, the operating system notices a connection
that it has not set up itself. Consequently, it responds with a rst-segment to shut
down that connection. The problem was solved by blocking outgoing segments
with a firewall, so that the rst-segments do not close the connection. This can
be done in Ubuntu using the iptables command.

We encountered many stumbling blocks in our attempt to learn a model
for Ubuntu 13.10. The TCP implementation for Ubuntu is very time sensitive
and many factors interfere that can invalidate learning. We tried to eliminate as
many of the time related factors as possible, since they cannot be learned with
current learning tools.

First of all, with syn+ack retransmission disabled on Ubuntu 13.10, the
server drops the connection quickly if it does not get a proper ack response (and
transitions to listening-state). Consequently, when running long sequence of
inputs, we were often faced with non-determinism caused by this reset. Moreover,
we could not find a parameter that increases the time spent in syn rcvd. To go
around this problem we used short queries (6-8 length) when learning the TCP
implementation for Ubuntu 13.10.

Next, we faced occasional delayed ack-segments on Ubuntu. Whenever an
ack-segment was delayed, the adapter was detecting timeout instead of the de-
layed acknowledgements. To improve on this, we set higher bounds for timeouts,
but low enough so that the server doesn’t transition from syn rcvd to listen-
ing.

For Ubuntu 13.10 we also discovered that, whenever in the close wait-
state, the server behaves non deterministically when the client client sends ack
and fin+ack-segments with valid sequence number and invalid acknowledge-
ment number. On receiving these packets, the server either retransmits the the
ack-segment it sent when acknowledging the fin+ack-segment that lead to
the close wait-state or it sends a timeout. At the moment, we cannot track
this behaviour down to a timing parameter. Because of this issue, we elimi-
nated these inputs from the alphabet. We also eliminated the abstract input
Request(ack+rst, valid, invalid) from the alphabet since it reset the system
only in certain states. This made definition of the initialization function impos-
sible without overly complicating the mapper.

To sum up, we faced many challenges learning Ubuntu 13.10’s implemen-
tation of TCP and we do not have yet full insight on their association with
Ubuntu’s TCP parameters. Investigation of this behaviour is a subject for fu-
ture work. In spite this, under the circumstances described, we were able to learn
a model unaffected by many of Ubuntu’s TCP timing triggers.

12



7 Experimental Results

We learned models for Windows 8 and Ubuntu 13.10 LTS. As mentioned pre-
viously, the client and server reside in different operating systems. Because the
adapter can only function under Linux, we ran the learner setup (or client) on
Ubuntu systems.

For Windows 8, the client was deployed on a guest virtual machine using the
Ubuntu 12.04 LTS operating system, while the server resided on the Windows
8 host. We also experimented with the client residing on a separate computer
running Ubuntu 13.10 that communicated with the same Windows 8 server and
obtained similar results. Similarly for Ubuntu 13.10, the server and client were
deployed both on one computer, each in its own Ubuntu virtual machine within
the same Windows 8 host, and on separate machines.

In order to reduce the size of the diagram, we eliminate all self loops that have
timeout outputs. Moreover, we use the initial flag letters as shorthands: s for syn,
a for ack, f for fin and r for rst. We condense Request/Response(flags, seq, ack)
to flags(seq, ack) and we group inputs that have the same abstract output and
resulting state. valid and invalid abstract parameters are shorthanded to v and
inv respectively. Finally, inputs that have the same effect regardless of the valid
or invalid value of a parameter are merged and the parameter is replaced with
.

S(V,V)/SA(FRESH,CLSN+1)

A(V,INV)/R(LAS,LAS)
F(INV,_)/A(SVSN+1,CLSN)
AF(V,INV)/R(LAS,LAS)

AR(V,_)/timeout
R(V,_)/timeout

S(V,_)/RA(ZERO,CLSN+1)

{A,AF}(INV,_)/A(SVSN+1,CLSN)
{F,S,SA}(INV,_)/A(SVSN+1,CLSN)

A(V,V)/timeout

AF(V,V)/A(SVSN+1,CLSN+1)AF(V,V)/A(SVSN+1,CLSN+1)

SA(V,V)/R(SVSN+1,SVSN+1)
SA(V,INV)/R(LAS,LAS)
{R,AR}(V,_)/timeout

S(V,_)/RA(ZERO,CLSN+1)

{A,AF}(INV,_)/A(SVSN+1,CLSN)
{F,S,SA}(INV,_)/A(SVSN+1,CLSN)

{R,AR}(V,_)/timeout
S(V,_)/RA(ZERO,CLSN+1)
SA(V,INV)/R(LAS,LAS)

SA(V,V)/R(SVSN+1,SVSN+1)

Fig. 6. Learned model for Windows 8 TCP

Figures 6 and 7 show the state models learned for the two operating systems.
Both models depict 4 states of the reference model. We can identify handshake
and termination on the two diagrams by following the sequence of inputs: s(v,v),
a(v,v), af(v,v). We see that for each input in the sequence the same output is

13



generated. There are, however, notable differences, like for example the verbosity
of the listening state in case of Ubuntu 13.10. rst-segment responses also differ.
Whereas in Ubuntu 13.10, a rst-segment response always caries a 0 acknowledg-
ment number, for Windows 8, similar to its joining sequence number, it takes the
value of the last acknowledgment number sent resulting in rst(las,las) outputs.

S(V,V)/SA(FRESH,CLSN+1)

{SA,AF,A}(INV,V)/A(SVSN+1,CLSN)
{A,AF}(INV,INV)/R(LAS,ZERO)
{F,S}(INV,_)/A(SVSN+1,CLSN)

SA(_,INV)/R(LAS,ZERO)

AR(V,V)/timeout
R(V,_)/timeout

S(V,_)/RA(ZERO,CLSN+1)
SA(V,V)/R(SVSN+1,ZERO)

{A,AF}(INV,_)/A(SVSN+1,CLSN)
SA(_,_)/A(SVSN+1,CLSN)

A(V,V)/timeout

AF(V,V)/A(SVSN+1,CLSN+1)

AF(V,V)/A(SVSN+1,CLSN+1)

AR(V,V)/timeout
R(V,_)/timeout

{A,AF}(INV,_)/A(SVSN+1,CLSN)
SA(_,_)/A(SVSN+1,CLSN)

A(V,V)/R(LAS,ZERO)
AF(V,V)/R(LAS,ZERO)
SA(V,V)/R(LAS,ZERO)

AR(V,V)/timeout
R(V,_)/timeout

Fig. 7. Learned model for Ubuntu 13.10 TCP

8 Concluding Remarks and Future Work

We defined and implemented a learning setup for the inference using abstraction
of the TCP network protocol. We then used this setup to learn fragments of
different implementations of the TCP protocol, more specifically, the Windows
8 and Ubuntu 13.10 implementations. We learned these implementations on the
basis of flags, acknowledgement and sequence numbers.

For our experiments, we built initial state predicting mappers tailored to the
operating system’s TCP implementation. These mappers reduced the number
of concrete inputs and outputs to a small set of abstract inputs and outputs.
We ran our setup for each mapper and respective operating system and, in each
case, covered 4 states of the TCP protocol.

Comparing the models obtained for each protocol, we found a slight variation
between the Windows and Ubuntu implementations of the TCP protocol. While
in normal scenarios behavior turned out to be similar, some abnormal scenarios
revealed differences in the values of sequence and acknowledgement numbers, as
well as the flags found in response packets. This variation results in differing
transitions between the state machines inferred for each OS. The difference in
behavior is already leveraged by tools such as nmap(see [10]), as a means of
operating system fingerprinting.

14



In the future we also plan to further investigate the behavior of the Ubuntu
implementation. Moreover, we want to extend the TCP alphabet so that we also
account for data transfer. We also aim to learn fragments of protocols built over
TCP, for instance SSH and FTP. In order to facilitate future experiments, we also
aim to automate the learning process. We believe the mapper can be constructed
automatically using tools that automatically infer invariants over sets o values.
These tools can then be harnessed by algorithms that automatically construct
the mapper. Such an algorithm already exists and is implemented in Tomte,
however, the only invariant it supports is equality. We believe we can extend
this constraint to simple linear invariants. Such an extension would enable the
automatic inference of mappers for more complex systems, including the TCP
protocol.

References

1. Aarts, F.: Tomte. http://www.italia.cs.ru.nl/tomte/

2. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: 4th
International Workshop on Security Testing, Luxembourg, March 22, Proceedings,
SECTEST 2013 (2013)

3. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In Giannakopoulou,
D., Mry, D., eds.: FM 2012: Formal Methods. Volume 7436 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2012) 10–27

4. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communi-
cation protocols using regular inference with abstraction. In Petrenko, A., Simo,
A., Maldonado, J., eds.: Testing Software and Systems. Volume 6435 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2010) 188–204 Full ver-
sion avalable at https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=

2013-Aarts-InferenceRegular.
5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.

75(2) (November 1987) 87–106
6. Bchler, M., Hossen, K., Mihancea, P.F., Minea, M., Groz, R., Oriat, C.: Model

inference and security testing in the spacios project. In: Proc. CSMR-WCRE,
IEEE (2014) 411–414

7. Cho, C.Y., Babi ć, D., Shin, E.C.R., Song, D.: Inference and analysis of formal
models of botnet command and control protocols. In: Proceedings of the 17th
ACM conference on Computer and communications security. CCS ’10, New York,
NY, USA, ACM (2010) 426–439

8. Corelabs: Impacket. http://corelabs.coresecurity.com/index.php?module=

Wiki&action=view&type=tool&name=Impacket

9. Corelabs: Pcapy. http://corelabs.coresecurity.com/index.php?module=

Wiki&action=view&type=tool&name=Pcapy

10. Fyodor: Nmap. http://nmap.org/book/osdetect.html

11. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In Kutsche, R.D., Weber, H., eds.: FASE02. Volume 2306
of LNCS., SV (2002) 80–95

12. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register au-
tomata. In Kuncak, V., Rybalchenko, A., eds.: Verification, Model Checking,

15



and Abstract Interpretation. Volume 7148 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2012) 251–266

13. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In
Abdulla, P., Leino, K., eds.: TACAS. Volume 6605 of Lecture Notes in Computer
Science., Springer (2011) 220–223

14. Postel (editor), J.: Transmission Control Protocol - DARPA Internet Program
Protocol Specification (RFC 3261) (September 1981) Available via http://www.

ietf.org/rfc/rfc793.txt.
15. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-

olating behavioral models. STTT 11(5) (2009) 393–407
16. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: Learnlib: a framework for extrapo-

lating behavioral models. International Journal on Software Tools for Technology
Transfer 11(5) (2009) 393–407

17. Secdev: Scapy. http://www.secdev.org/projects/scapy/

18. Secdev: Scapy troubleshooting. www.secdev.org/projects/scapy/doc/

troubleshooting.html

19. Shahbaz, M., Groz, R.: Inferring mealy machines. In Cavalcanti, A., Dams, D., eds.:
FM 2009: Formal Methods. Volume 5850 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2009) 207–222

20. Smeenk, W., Vaandrager, F., Janssen, D.: Applying automata learning to embed-
ded control software. (2013)

21. SPaCIoS: Deliverable 2.2.1: Method for assessing and retrieving models (2013)

16


